186 research outputs found

    Targeting Mitochondrial Cell Death Pathway to Overcome Drug Resistance with a Newly Developed Iron Chelate

    Get PDF
    Background: Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer. Methodology/Principal Findings: In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR. Conclusion/Significance: Our study provides evidence that FeNG, a redox active metal chelate may be a promising ne

    Amelioration of galactosamine-induced nephrotoxicity by a protein isolated from the leaves of the herb, Cajanus indicus L

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Galactosamine (GalN), an established experimental toxin, mainly causes liver injury via the generation of free radicals and depletion of UTP nucleotides. Renal failure is often associated with end stage liver damage. GalN intoxication also induces renal dysfunction in connection with hepatic disorders. Present study was designed to find out the effect of a protein isolated from the leaves of the herb <it>Cajanus indicus </it>against GalN induced renal damage.</p> <p>Methods</p> <p>Both preventive as well as curative effect of the protein was investigated in the study. GalN was administered intraperitoneally at a dose of 800 mg/kg body weight for 3 days pre and post to protein treatment at an intraperitoneal dose of 2 mg/kg body weight for 4 days. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), levels of cellular metabolites, reduced glutathione (GSH), total thiols, oxidized glutathione (GSSG) and lipid peroxidation end products were determined to estimate the status of the antioxidative defense system. In addition, serum creatinine and urea nitrogen (UN) levels were also measured as a marker of nephrotoxicity.</p> <p>Results</p> <p>Results showed that GalN treatment significantly increased the serum creatinine and UN levels compared to the normal group of mice. The extent of lipid peroxidation and the level of GSSG were also enhanced by the GalN intoxication whereas the activities of antioxidant enzymes SOD, CAT, GR and GST as well as the levels of total thiols and GSH were decreased in the kidney tissue homogenates. Protein treatment both prior and post to the toxin administration successfully altered the effects in the experimental mice.</p> <p>Conclusion</p> <p>Our study revealed that GalN caused a severe oxidative insult in the kidney. Protein treatment both pre and post to the GalN intoxication could protect the kidney tissue against GalN induced oxidative stress. As GalN induced severe hepatotoxicity followed by renal failure, the protective role of the protein against GalN induced renal damages is likely to be an indirect effect. Since the protein possess hepatoprotective activity, it may first ameliorate GalN-induced liver damage and consequently the renal disorders are reduced. To the best of our knowledge, this is probably the first report describing GalN-induced oxidative stress in renal damages and the protective role of a plant protein molecule against it.</p

    Butyrate Attenuates Lipopolysaccharide-Induced Inflammation in Intestinal Cells and Crohn's Mucosa through Modulation of Antioxidant Defense Machinery

    Get PDF
    Oxidative stress plays an important role in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CrD). High levels of Reactive Oxygen Species (ROS) induce the activation of the redox-sensitive nuclear transcription factor kappa-B (NF-ÎşB), which in turn triggers the inflammatory mediators. Butyrate decreases pro-inflammatory cytokine expression by the lamina propria mononuclear cells in CrD patients via inhibition of NF-ÎşB activation, but how it reduces inflammation is still unclear. We suggest that butyrate controls ROS mediated NF-ÎşB activation and thus mucosal inflammation in intestinal epithelial cells and in CrD colonic mucosa by triggering intracellular antioxidant defense systems. Intestinal epithelial Caco-2 cells and colonic mucosa from 14 patients with CrD and 12 controls were challenged with or without lipopolysaccaride from Escherichia Coli (EC-LPS) in presence or absence of butyrate for 4 and 24 h. The effects of butyrate on oxidative stress, p42/44 MAP kinase phosphorylation, p65-NF-ÎşB activation and mucosal inflammation were investigated by real time PCR, western blot and confocal microscopy. Our results suggest that EC-LPS challenge induces a decrease in Gluthation-S-Transferase-alpha (GSTA1/A2) mRNA levels, protein expression and catalytic activity; enhanced levels of ROS induced by EC-LPS challenge mediates p65-NF-ÎşB activation and inflammatory response in Caco-2 cells and in CrD colonic mucosa. Furthermore butyrate treatment was seen to restore GSTA1/A2 mRNA levels, protein expression and catalytic activity and to control NF-ÎşB activation, COX-2, ICAM-1 and the release of pro-inflammatory cytokine. In conclusion, butyrate rescues the redox machinery and controls the intracellular ROS balance thus switching off EC-LPS induced inflammatory response in intestinal epithelial cells and in CrD colonic mucosa

    Protective Role of Taurine against Arsenic-Induced Mitochondria-Dependent Hepatic Apoptosis via the Inhibition of PKCδ-JNK Pathway

    Get PDF
    BACKGROUND: Oxidative stress-mediated hepatotoxic effect of arsenic (As) is mainly due to the depletion of glutathione (GSH) in liver. Taurine, on the other hand, enhances intracellular production of GSH. Little is known about the mechanism of the beneficial role of taurine in As-induced hepatic pathophysiology. Therefore, in the present study we investigated its beneficial role in As-induced hepatic cell death via mitochondria-mediated pathway. METHODOLOGY/PRINCIPAL FINDINGS: Rats were exposed to NaAsO(2) (2 mg/kg body weight for 6 months) and the hepatic tissue was used for oxidative stress measurements. In addition, the pathophysiologic effect of NaAsO(2) (10 microM) on hepatocytes was evaluated by determining cell viability, mitochondrial membrane potential and ROS generation. As caused mitochondrial injury by increased oxidative stress and reciprocal regulation of Bcl-2, Bcl-xL/Bad, Bax, Bim in association with increased level of Apaf-1, activation of caspase 9/3, cleavage of PARP protein and ultimately led to apoptotic cell death. In addition, As markedly increased JNK and p38 phosphorylation with minimal disturbance of ERK. Pre-exposure of hepatocytes to a JNK inhibitor SP600125 prevented As-induced caspase-3 activation, ROS production and loss in cell viability. Pre-exposure of hepatocytes to a p38 inhibitor SB2035, on the other hand, had practically no effect on these events. Besides, As activated PKCdelta and pre-treatment of hepatocytes with its inhibitor, rottlerin, suppressed the activation of JNK indicating that PKCdelta is involved in As-induced JNK activation and mitochondrial dependent apoptosis. Oral administration of taurine (50 mg/kg body weight for 2 weeks) both pre and post to NaAsO(2) exposure or incubation of the hepatocytes with taurine (25 mM) were found to be effective in counteracting As-induced oxidative stress and apoptosis. CONCLUSIONS/SIGNIFICANCE: Results indicate that taurine treatment improved As-induced hepatic damages by inhibiting PKCdelta-JNK signalling pathways. Therefore taurine supplementation could provide a new approach for the reduction of hepatic complication due to arsenic poisoning

    Melatonin protects rats from radiotherapy-induced small intestine toxicity

    Get PDF
    Radiotherapy-induced gut toxicity is among the most prevalent dose-limiting toxicities following radiotherapy. Prevention of radiation enteropathy requires protection of the small intestine. However, despite the prevalence and burden of this pathology, there are currently no effective treatments for radiotherapy-induced gut toxicity, and this pathology remains unclear. The present study aimed to investigate the changes induced in the rat small intestine after external irradiation of the tongue, and to explore the potential radio-protective effects of melatonin gel. Male Wistar rats were subjected to irradiation of their tongues with an X-Ray YXLON Y.Tu 320-D03 irradiator, receiving a dose of 7.5 Gy/day for 5 days. For 21 days post-irradiation, rats were treated with 45 mg/day melatonin gel or vehicle, by local application into their mouths. Our results showed that mitochondrial oxidative stress, bioenergetic impairment, and subsequent NLRP3 inflammasome activation were involved in the development of radiotherapy-induced gut toxicity. Oral treatment with melatonin gel had a protective effect in the small intestine, which was associated with mitochondrial protection and, consequently, with a reduced inflammatory response, blunting the NF-ÎşB/NLRP3 inflammasome signaling activation. Thus, rats treated with melatonin gel showed reduced intestinal apoptosis, relieving mucosal dysfunction and facilitating intestinal mucosa recovery. Our findings suggest that oral treatment with melatonin gel may be a potential preventive therapy for radiotherapy-induced gut toxicity in cancer patients.This study was partially supported by grant no. SAF2009-14037 from the Spanish Ministry of Economy and Competitivity (MINECO), GREIB.PT_2010_04 from the CEIBiotic Program of the University of Granada, Spain, and CTS-101 from the ConsejerĂ­a de InnovaciĂłn, Ciencia y Empresa, Junta de AndalucĂ­a, Spain
    • …
    corecore